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Detection of Stationary Atmospheric Waves in Venus with a
Self-Supervised Adversarial Model Using Anomaly Detection

Abstract
In this paper, we propose an anomaly detection scheme for identifying stationary waves in Venus'
atmosphere using a self-supervised model. Initially, we stack multiple images of projected maps of
Venus to filter out other types of features, highlighting stationary waves. We split each image into
72 X72-resolution patches and designated patches with waves as anomalies. In contrast, the rest of
the grids are designated as normal data. We create a variational autoencoder—based, adversarially
trained anomaly detection model. We train the model using a portion of the normal data and test it with
the remaining normal and anomaly data. According to the anomaly hypothesis, the model will
successfully reconstruct the trained data and fail on the "anomaly" designated untrained data. The
results show that the model can differentiate between stationary waves and cloud formations, with an

AUC score of 78.37%.

1. Introduction

Venus is the second planet from the Sun and is
similar in size and bulk chemical composition to Earth.
However, its atmosphere has evolved in a drastically
different way [2]. It is mainly composed of CO2 (carbon
dioxide) and other minor compounds like SO2, which
can condense to form clouds at approximately 48-70
km of altitude [3]. The atmosphere near the cloud top
flows at a speed of about 100m/s, around 60 times
faster than the solid globe. The surface temperature on
Venus is incredibly high, reaching up to 460°C due to a
runaway greenhouse effect caused primarily by the
aforementioned atmospheric composition and an
atmospheric mass that can reach 100 times that of
Earth's [4].

Atmospheric waves on Venus are created as
disturbances that propagate through the atmosphere
due to changes in temperature, pressure, and other
atmospheric variables. In Venus' atmosphere, these
waves can produce patterns and oscillations that could
be detected. Detecting atmospheric waves in the
atmosphere of Venus could provide valuable insights

into the planet's atmospheric dynamics and further
characterization of the phenomena itself. Moreover, the
detection and characterization of stationary features on
the atmosphere allows a better understanding of
possible connections between the surface topography
and atmospheric circulation.

Fig. 1 Venus images faken by Akatsuki space probe on Decambar Tih, 2015,
using long-infrered wawalangth (on fha left), and at ulbravioled wevelangth (on tha
rightifg].

Detection of atmospheric gravity waves on Venus has
generally been done by experts. Since most wave
features have a low frequency on most observed
wavelengths, various processing methods are usually



applied to the images to identify waves [1]. However,
with increased amounts of high—quality data provided
mainly by space missions such as the ongoing Akatsuki
space probe [5], smaller features can now be identified
in significant numbers. This leads to manual
identification becoming a time—consuming process,
which can prove impractical and possibly lead to
increased human error, such as false positives or
overlooking critical atmospheric gravity wave features.
Due to the overwhelming quantity of images with
multiple cloud features, we propose a self-supervised
anomaly detection scheme to detect atmospheric
gravity waves as anomalies on Venus using long—-range
infrared (LIR) data from the Akatsuki space probe. The
results show that the proposed preprocessing makes it
possible to highlight the atmospheric gravity waves, and
the proposed model successfully discriminates between
normal features and atmospheric gravity wave features.

2. Data Preprocessing and Anomaly Detection Model

The LIR images taken by the Akatsuki probe, provided
by the Japan Aerospace Exploration Agency (JAXA), are
publicly available
(https://darts.isas.jaxa.jp/doi/vco/vco-00012.html). The
dataset consists of consecutive images with varying
time separations between them, ranging from a few
seconds to several hours. As many of these features are
of low frequency and our target features are stationary
relative to the background, we performed image
stacking on consecutive images with an existing wave
to highlight its features better and smooth out the
remaining parts of the image.

We create 11 stacked images for the dataset creation
from the days when the stationary waves were clearly
identified between May 2016 and January 2017, by
manual investigation, as reported in [6]. After applying
the smoothing operation (stacking) to eliminate other
low—frequency features, we apply a high—pass filter to
highlight the stationary wave features. We split these
stacked images into smaller images using a grid size of
72 x 72 pixels, which we observed to fit the best for the
stationary waves on our dataset.. We gathered 399
images, of which 33 contain stationary waves. The
normal image data sample size reaches 2314 after
applying horizontal and vertical flips, random 10—degree
tilt, and random zoom operation between 80%—-120%.
Since the zonal wind dominates the atmospheric flow at
the top of clouds, applying horizontal flips to these
images would not be reasonable for the specific case of
Venus. However, due to the approximate symmetry in
the dynamical profile of the northern and southern
hemispheres, a vertical flip operation can be

performed.. This doubles the available stationary wave
image number for testing. An example set of images
containing “normal” cloud formations and stationary
waves can be seen in Fig. 2. The “normal” terminology
simply refers to all other images that don’t feature the
specific morphological features of stationary waves.

The anomaly detection model is an
encoder—decoder—based, adversarially trained
generative model, including a Discriminator. The input
size of the model is 72 x 72 grayscale images, and the
encoder consists of four cascading convolutional and
max—pooling layers. The feature vector of length 256
becomes the input for the decoder, which has four
upsampling and convolutional layers instead of
transpose convolution due to observed checkerboard
formations in generated images. The decoder generates
the image with the exact resolution of the input image.
The Discriminator in its architecture is identical to the
encoder, except it also has a sigmoid layer that
classifies the input image as fake and leaky rectified
linear unit (I-RelLU) activation operation on each layer.
During the training, the generator creates more realistic
images, and the Discriminator classifies the images with
better accuracy.

Fig. 2 Nermal cloud formation examples on top, and staticnary wawve
examples on bottom five images.

For robust training, we introduce three loss
functions to the model:
1— Contextual Loss: We use the L1 loss between the

input image x and the reconstruction ; for high—level
feature distribution learning by the model, which helps
the generator create better contextual images:

~
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2— Latent Loss: We apply L2 loss between the input
image's feature vector and the reconstructed image's
feature vector in the Discriminator's fully-connected
layer. The loss is as follows:
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3—- Adversarial loss: We apply Wasserstein loss [7] on
the Discriminator, which seeks a minimized distance
between the real and the generated data distribution.



This makes the Discriminator a critic that scores the

"realness" or "fakeness" of an input image rather than

classifying it as authentic or fake. The loss is as follows:
wasserstein — mean(D(x)) + mean (D(G(2)))

where D(x) is the output of the Discriminator for real
input images x, and G(z) is the generator's output for
fake images generated from noise z. The mean is taken
over the batch of input images.
The total loss of the model is the weighted sum of
three loss functions, as shown below:
=40 X L

total context latent

The optimal weighting is found after a grid search
operation.

wasserstein

3. Model Training and Anomaly Detection

We split the “normal” designated cloud formation
data into 80% train and 20% test. The hypothesis is that
the model learns the high—dimension and latent space
representation of normal clouds during training.
Therefore, we train the model using only "normal
designated data. We train the model in an unsupervised
fashion for 100,000 iterations using Adam optimizer and

a learning rate of 10_4 until the loss values stabilize and
the reconstructed images look similar to the original
data. We do not use "anomaly" designated stationary
wave data during the training.

We use the area under the curve (AUC) of the receiver
operating characteristics (ROC) metric to calculate the
performance of the Discriminator. The model achieves a
78.37% AUC score despite the low number of data and
hard-to-distinguish features. We do not employ
thresholding metrics such as the F1 score since the
anomaly—designated images are only available during
the inference.

Anomaly detection hypothesizes that the model is
expected to reconstruct the cloud formation well and is
expected to fail in reconstructing stationary waves since
it has not learned high—dimension or latent
representation of the anomaly data. Taking advantage
of this discrepancy, we calculate the anomaly score for
each test image with the formula below:

AR = (1 — 2) X R(®) + A x L(x)
where R(x) is the L1 loss between the input and the

generated image, L(x) is the L2 loss between the latent
vectors of input and the generated images in the
Discriminator’s fully connected layer, and A is the
weighting factor, for which we designate as A = 0.2.
Following min—max normalization of the anomaly score
vector A, the values scale within the range [0, 1]:

L _ _AG)—min(4)
Alx) = max(A)—min(A)

We plot the anomaly score distributions of cloud and
stationary waves as a qualitative metric. The resulting
image can be shown in Fig. 2.

4., Conclusion

In this paper, we propose an anomaly detection
approach to detect stationary atmospheric waves in

Venus' atmosphere. Our model is a variational
autoencoder—based, adversarially trained,
self-supervised generative model. We stack

long—infrared wavelength images obtained from the
Akatsuki probe, where the stationary waves appear to
highlight the wave features and reduce other features,
apply smoothing and high—pass filters, and split each
image into 72 x 72 grids. We manually select grids with
stationary waves and designate them as "anomalies."
We train the model with 80% of the data normal cloud
data. During inference, we test the Discriminator for
guantitative scoring, which results in a 78.37% AUC
score, and plot the anomaly distributions between the
normal and stationary wave images. For future work, we
will compare the anomaly detection performance
between different wavelengths (e.g., ultraviolet) and use
other probe data with a more complex model for better
performance. Although the techniques applied in image
preprocessing were suitable, there remains another
possibility for improvement with extended analysis.
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Fig. 3 Anomaly score distribution for regular cloud formations
and sfationary waves. Note that scores close to 0 indicate
normality, and scores close o 1 indicate anomaly
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