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Abstract

In this paper, we propose an anomaly detection scheme for identifying stationary waves in Venus'

atmosphere using a self-supervised model. Initially, we stack multiple images of projected maps of

Venus to filter out other types of features, highlighting stationary waves. We split each image into

72✕72-resolution patches and designated patches with waves as anomalies. In contrast, the rest of

the grids are designated as normal data. We create a variational autoencoder-based, adversarially

trained anomaly detection model. We train the model using a portion of the normal data and test it with

the remaining normal and anomaly data. According to the anomaly hypothesis, the model will

successfully reconstruct the trained data and fail on the "anomaly" designated untrained data. The

results show that the model can differentiate between stationary waves and cloud formations, with an

AUC score of 78.37%.

1. Introduction

Venus is the second planet from the Sun and is

similar in size and bulk chemical composition to Earth.

However, its atmosphere has evolved in a drastically

different way [2]. It is mainly composed of CO2 (carbon

dioxide) and other minor compounds like SO2, which

can condense to form clouds at approximately 48-70

km of altitude [3]. The atmosphere near the cloud top

flows at a speed of about 100m/s, around 60 times

faster than the solid globe. The surface temperature on

Venus is incredibly high, reaching up to 460°C due to a

runaway greenhouse effect caused primarily by the

aforementioned atmospheric composition and an

atmospheric mass that can reach 100 times that of

Earth's [4].

Atmospheric waves on Venus are created as

disturbances that propagate through the atmosphere

due to changes in temperature, pressure, and other

atmospheric variables. In Venus' atmosphere, these

waves can produce patterns and oscillations that could

be detected. Detecting atmospheric waves in the

atmosphere of Venus could provide valuable insights

into the planet's atmospheric dynamics and further

characterization of the phenomena itself. Moreover, the

detection and characterization of stationary features on

the atmosphere allows a better understanding of

possible connections between the surface topography

and atmospheric circulation.

Detection of atmospheric gravity waves on Venus has

generally been done by experts. Since most wave

features have a low frequency on most observed

wavelengths, various processing methods are usually



applied to the images to identify waves [1]. However,

with increased amounts of high-quality data provided

mainly by space missions such as the ongoing Akatsuki

space probe [5], smaller features can now be identified

in significant numbers. This leads to manual

identification becoming a time-consuming process,

which can prove impractical and possibly lead to

increased human error, such as false positives or

overlooking critical atmospheric gravity wave features.

Due to the overwhelming quantity of images with

multiple cloud features, we propose a self-supervised

anomaly detection scheme to detect atmospheric

gravity waves as anomalies on Venus using long-range

infrared (LIR) data from the Akatsuki space probe. The

results show that the proposed preprocessing makes it

possible to highlight the atmospheric gravity waves, and

the proposed model successfully discriminates between

normal features and atmospheric gravity wave features.

2. Data Preprocessing and Anomaly Detection Model

The LIR images taken by the Akatsuki probe, provided

by the Japan Aerospace Exploration Agency (JAXA), are

publicly available

(https://darts.isas.jaxa.jp/doi/vco/vco-00012.html). The

dataset consists of consecutive images with varying

time separations between them, ranging from a few

seconds to several hours. As many of these features are

of low frequency and our target features are stationary

relative to the background, we performed image

stacking on consecutive images with an existing wave

to highlight its features better and smooth out the

remaining parts of the image.

We create 11 stacked images for the dataset creation

from the days when the stationary waves were clearly

identified between May 2016 and January 2017, by

manual investigation, as reported in [6]. After applying

the smoothing operation (stacking) to eliminate other

low-frequency features, we apply a high-pass filter to

highlight the stationary wave features. We split these

stacked images into smaller images using a grid size of

, which we observed to fit the best for the72 × 72 𝑝𝑖𝑥𝑒𝑙𝑠
stationary waves on our dataset.. We gathered 399

images, of which 33 contain stationary waves. The

normal image data sample size reaches 2314 after

applying horizontal and vertical flips, random 10-degree

tilt, and random zoom operation between 80%-120%.

Since the zonal wind dominates the atmospheric flow at

the top of clouds, applying horizontal flips to these

images would not be reasonable for the specific case of

Venus. However, due to the approximate symmetry in

the dynamical profile of the northern and southern

hemispheres, a vertical flip operation can be

performed.. This doubles the available stationary wave

image number for testing. An example set of images

containing “normal” cloud formations and stationary

waves can be seen in Fig. 2. The “normal” terminology

simply refers to all other images that don’t feature the

specific morphological features of stationary waves.

The anomaly detection model is an

encoder-decoder-based, adversarially trained

generative model, including a Discriminator. The input

size of the model is grayscale images, and the72 × 72
encoder consists of four cascading convolutional and

max-pooling layers. The feature vector of length 256

becomes the input for the decoder, which has four

upsampling and convolutional layers instead of

transpose convolution due to observed checkerboard

formations in generated images. The decoder generates

the image with the exact resolution of the input image.

The Discriminator in its architecture is identical to the

encoder, except it also has a sigmoid layer that

classifies the input image as fake and leaky rectified

linear unit (l-ReLU) activation operation on each layer.

During the training, the generator creates more realistic

images, and the Discriminator classifies the images with

better accuracy.

For robust training, we introduce three loss

functions to the model:

1- Contextual Loss: We use the L1 loss between the

input image x and the reconstruction for high-level𝑥
feature distribution learning by the model, which helps

the generator create better contextual images:

𝐿
𝑐𝑜𝑛𝑡𝑒𝑥𝑡

= 𝐸
𝑥~𝑝

𝑥

|𝑥 − 𝑥|
1

2- Latent Loss: We apply L2 loss between the input

image's feature vector and the reconstructed image's

feature vector in the Discriminator's fully-connected

layer. The loss is as follows:

𝐿
𝑙𝑎𝑡𝑒𝑛𝑡

= 𝐸
𝑥~𝑝

𝑥

|𝑓(𝑥) − 𝑓(𝑥)|
2

3- Adversarial loss: We apply Wasserstein loss [7] on

the Discriminator, which seeks a minimized distance

between the real and the generated data distribution.



This makes the Discriminator a critic that scores the

"realness" or "fakeness" of an input image rather than

classifying it as authentic or fake. The loss is as follows:

𝐿
𝑤𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛

=− 𝑚𝑒𝑎𝑛(𝐷(𝑥)) +  𝑚𝑒𝑎𝑛 (𝐷(𝐺(𝑧)))

where is the output of the Discriminator for real𝐷(𝑥)
input images , and is the generator's output for𝑥 𝐺(𝑧)
fake images generated from noise z. The mean is taken

over the batch of input images.

The total loss of the model is the weighted sum of

three loss functions, as shown below:

𝐿
𝑡𝑜𝑡𝑎𝑙

= 40 × 𝐿
𝑐𝑜𝑛𝑡𝑒𝑥𝑡

+ 𝐿
𝑙𝑎𝑡𝑒𝑛𝑡

+ 𝐿
𝑤𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛

 

The optimal weighting is found after a grid search

operation.

3. Model Training and Anomaly Detection

We split the “normal” designated cloud formation

data into 80% train and 20% test. The hypothesis is that

the model learns the high-dimension and latent space

representation of normal clouds during training.

Therefore, we train the model using only "normal"

designated data. We train the model in an unsupervised

fashion for 100,000 iterations using Adam optimizer and

a learning rate of until the loss values stabilize and10−4

the reconstructed images look similar to the original

data. We do not use "anomaly" designated stationary

wave data during the training.

We use the area under the curve (AUC) of the receiver

operating characteristics (ROC) metric to calculate the

performance of the Discriminator. The model achieves a

78.37% AUC score despite the low number of data and

hard-to-distinguish features. We do not employ

thresholding metrics such as the F1 score since the

anomaly-designated images are only available during

the inference.

Anomaly detection hypothesizes that the model is

expected to reconstruct the cloud formation well and is

expected to fail in reconstructing stationary waves since

it has not learned high-dimension or latent

representation of the anomaly data. Taking advantage

of this discrepancy, we calculate the anomaly score for

each test image with the formula below:

𝐴(𝑥) = (1 − λ) × 𝑅(𝑥) + λ × 𝐿(𝑥)
where is the loss between the input and the𝑅(𝑥) 𝐿1
generated image, is the loss between the latent𝐿(𝑥) 𝐿2
vectors of input and the generated images in the

Discriminator’s fully connected layer, and is theλ
weighting factor, for which we designate as .λ = 0. 2
Following min-max normalization of the anomaly score

vector , the values scale within the range [0, 1]:Λ

Λ(𝑥) = 𝐴(𝑥)−𝑚𝑖𝑛(𝐴)
𝑚𝑎𝑥(𝐴)−𝑚𝑖𝑛(𝐴)

We plot the anomaly score distributions of cloud and

stationary waves as a qualitative metric. The resulting

image can be shown in Fig. 2.

4. Conclusion

In this paper, we propose an anomaly detection

approach to detect stationary atmospheric waves in

Venus' atmosphere. Our model is a variational

autoencoder-based, adversarially trained,

self-supervised generative model. We stack

long-infrared wavelength images obtained from the

Akatsuki probe, where the stationary waves appear to

highlight the wave features and reduce other features,

apply smoothing and high-pass filters, and split each

image into grids. We manually select grids with72 × 72
stationary waves and designate them as "anomalies."

We train the model with 80% of the data normal cloud

data. During inference, we test the Discriminator for

quantitative scoring, which results in a 78.37% AUC

score, and plot the anomaly distributions between the

normal and stationary wave images. For future work, we

will compare the anomaly detection performance

between different wavelengths (e.g., ultraviolet) and use

other probe data with a more complex model for better

performance. Although the techniques applied in image

preprocessing were suitable, there remains another

possibility for improvement with extended analysis.

References

[1] Kitahara, T. et al. (2019), “Stationary features at

the cloud top of Venus observed by Ultraviolet Imager

onboard Akatsuki,” Journal of Geophysical Research,



[2] Svedhem, H., et al. (2007) - “Venus Express -

The first European mission to Venus” - Planetary and

Space Science 55, pp. 1636-1652.

[3] Titov, D. et al. (2018) - “Clouds and hazes of

Venus” - Space Science Reviews 214:126.

[4] McFadden, L.A., Weissman, P.R., Johnson, T.V.,

(2007) - “Encyclopedia of the Solar System” - Second

Edition, Elsevier Inc.

[5] Nakamura, M., et al. (2011), -“Overview of Venus

Orbiter, Akatsuki” - Earth, Planets and Space 63, pp

443-457.

[6] Kouyama, T., et al. (2017), - “Topographical and

local time dependence of large stationary gravity waves

observed at the cloud top of Venus” - Geophysical

Research Letters, 44, 12098-12105.

[7] Arjovsky M., Chintala S., and Bottou, L. (2017), -

“Wasserstein generative adversarial networks,” -

Proceedings of the 34th International Conference on

Machine Learning,

vol. 70, 214–223.

[8] Fukuhara, T., et al. (2017) - “Large stationary

gravity wave in the atmosphere of Venus” - Nature

Geoscience, vol. 10, Iss. 2, pp. 85-88.


